On Essential Coexistence of Zero and Nonzero Lyapunov Exponents
نویسندگان
چکیده
We show that there exists a C∞ volume preserving diffeomorphism P of a compact smooth Riemannian manifold M of dimension 4, which is close to the identity map and has nonzero Lyapunov exponents on an open and dense subset G of not full measure and has zero Lyapunov exponent on the complement of G. Moreover, P |G has countably many disjoint open ergodic components.
منابع مشابه
Existence and Genericity Problems for Dynamical Systems with Nonzero Lyapunov Exponents
This is a survey-type article whose goal is to review some recent results on existence of hyperbolic dynamical systems with discrete time on compact smooth manifolds and on coexistence of hyperbolic and non-hyperbolic behavior. It also discusses two approaches to the study of genericity of systems with nonzero Lyapunov exponents. MSC2000 numbers: 58F09 DOI: 10.1134/S1560354707050024
متن کاملNon - Zero Lyapunov Exponents and Axiom
Let f : M → M be a C 1 diffeomorphism of a compact manifold M admitting a dominated splitting T M = E cs ⊕ E cu. We show that if the Lyapunov exponents of f are nonzero and have the same sign along the E cs and E cu directions on a total probability set (a set with probability one with respect to every f-invariant measure), then f is Axiom A. We also show that a f-ergodic measure whose Lyapunov...
متن کاملLiao Standard Systems and Nonzero Lyapunov Exponents for Differential Flows
Consider a C vector field together with an ergodic invariant probability that has l nonzero Lyapunov exponents. Using orthonormal moving frames along certain transitive orbits we construct a linear system of l differential equations which is a reduced form of Liao’s “standard system”. We show that the Lyapunov exponents of this linear system coincide with all the nonzero exponents of the given ...
متن کاملEssential Spectrum of the Linearized 2D Euler Equation and Lyapunov–Oseledets Exponents
The linear stability of a steady state solution of 2D Euler equations of an ideal fluid is being studied. We give an explicit geometric construction of approximate eigenfunctions for the linearized Euler operator L in vorticity form acting on Sobolev spaces on two dimensional torus. We show that each nonzero Lyapunov–Oseledets exponent for the flow induced by the steady state contributes a vert...
متن کاملLectures on Lyapunov Exponents and Smooth Ergodic Theory
1. Lyapunov Exponents for Differential Equations 2. Abstract Theory of Lyapunov Exponents 3. Regularity of Lyapunov Exponents Associated with Differential Equations 4. Lyapunov Stability Theory 5. The Oseledets Decomposition 6. Dynamical Systems with Nonzero Lyapunov Exponents. Multiplicative Ergodic Theorem 7. Nonuniform Hyperbolicity. Regular Sets 8. Examples of Nonuniformly Hyperbolic System...
متن کامل